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Abstract
We demonstrate in a solid state quantum gate based on the electronic excitation
of a control atom that it is possible to disentangle the control electron, in the
presence of an arbitrary magnetic field and exchange interaction. This will allow
multiple gates on a single substrate, providing the basis for a solid state quantum
computer.

1. Introduction

An electronic spin state can be used to represent one qubit of quantum information, with a
general state being the superposition of the spin up and spin down states. In order to perform
quantum computation, entanglement between qubits is required. In this paper we consider a
solid state implementation proposed by Stoneham et al [1] which exploits the presence of defect
centres in a solid. The use of defect centres for quantum computation has been experimentally
demonstrated by Jelezko et al [2] and is particularly attractive since it has the potential for
operation at room temperature [1, 2].

The entanglement of the electronic spins states associated with two defects A and B are
controlled by the electronic excitation of a control atom C . As can be seen in figure 1, when
the control electron is in the ground state the wavefunction WCG does not overlap with the
wavefunctions WA and WB. However, when the control electron is put into an excited state the
wavefunction WCE now interacts with both WA and WB, enabling the spin states of A and B to
become entangled. The energy to move between the ground and excited states is provided by
a laser pulse of duration τpulse having a frequency resonantly tuned to the electronic excitation
energy. The system will continue to evolve in the excited state until after a time T � τpulse

a second laser pulse is applied to de-excite the control electron, causing it to return to the
ground state.

In general the spin states of the de-excited control electron C will remain entangled with
the spin states of A and B . This results in a gate which is not time invariant, but whose
functionality is entangled with all previous qubits and operations involving the gate. While
there may be possible advantages to this, from a design perspective it is desirable for the gate
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Figure 1. Energy diagram for the qubits A and B and control C .

to be time invariant. To achieve this we need to find the value of T which minimizes the
entanglement between the spin states of the control C and the qubits A and B .

2. Theoretical model

The interaction between the three electrons may be modelled with an effective Heisenberg
interaction [3]. If we choose units such that h̄ = 1 then the excited state Hamiltonian is of the
form [4]

He = JAσ A · σ C + JBσ B · σ C + BAσAz + BBσBz + BCσCz (1)

where σi are the Pauli spin matrices and σ = σx i + σyj + σzk; JA is the exchange interaction
strength between A and C , JB is the exchange interaction strength between B and C , and
Bi = −|B|µi , where µi is the magnetic moment of particle i , and B is the magnetic field. If
we assume that A and B are identical particles such that JA = JB = J say and BA = BB = B ,
then the Hamiltonian He acting on the state |ψ〉 = |C B A〉 is given by

He = B · I2 ⊗ (I2 ⊗ σz + σz ⊗ I2)+ BC · σz ⊗ I2 ⊗ I2 + J ·
∑

x,y,z

σi ⊗ (I2 ⊗ σi + σi ⊗ I2)

(2)

which is represented by the following 8 × 8 matrix:

He =




2B + Bc + 2J 0 0 0 0 0 0 0
0 Bc 0 0 2J 0 0 0
0 0 Bc 0 2J 0 0 0
0 0 0 −2J − 2B + Bc 0 2J 2J 0
0 2J 2J 0 −2J + 2B − Bc 0 0 0
0 0 0 2J 0 −Bc 0 0
0 0 0 2J 0 0 −Bc 0
0 0 0 0 0 0 0 2J − 2B − Bc



. (3)

This matrix may be diagonalized such that He = M−1�M , where � is a diagonal matrix with
elements (3B − f J + 2J, B − f J, B − J + Jω−, B − J − Jω−,−B − J − Jω+,−B − J +
Jω+,−B + f J, 2J − 3B + f J ), with M given by
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M =




1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0

0 1 1 0
− 1 + ω− + f

2
0 0 0

0 1 1 0
− 1 − ω− + f

2
0 0 0

0 0 0
− 1 − ω+ − f

2
0 1 1 0

0 0 0
− 1 + ω+ − f

2
0 1 1 0

0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 1




(4)

and f = (B − Bc)/J , ω+ = √
f 2 + 2 f + 9, ω− = √

f 2 − 2 f + 9. This diagonal form
allows the calculation of U(t) = e−iHet to be simplified to U(t) = M−1e−i�t M , which we
write in the form

U(t) = e−iHet =
[

Q+(t) χ−(t)
χ+(t) Q−(t)

]
(5)

where Q+(t) and Q−(t) are the 4 × 4 matrices which govern the entanglement between the
qubits A and B , when the control spin C is initially up or down, respectively. Similarly, χ±(t)
are 4 × 4 matrices which govern the entanglement between the qubits and the spin state of the
control electron. After an interpulse time T a second laser pulse is applied, causing the control
electron to return to the unexcited state such that for t � T , U(t) = U(T ). It can be shown
that for t � T , the Euclidean norm || · || of the matrices χ+(T ) and χ−(T ) are equal and are
given by

||χ ||2 = 4

(
1 − cos(2τω−)

ω2−
+ 1 − cos(2τω+)

ω2+

)
(6)

where τ = J T .

3. Disentangling the control electron

If we initialize the spin of the control electron to an eigenstate of spin up or spin down, it will be
disentangled from the information qubits if we are able to set ||χ+(T )|| = 0 and ||χ−(T )|| = 0.
Rodriquez et al [4] have shown for a single gate that by carefully choosing the magnetic field B
and the interpulse time T this can be achieved. However, in a quantum computer there may be
multiple gates on a single substrate and therefore this approach cannot in general be used, since
the magnetic field will be approximately homogeneous, with the only degree of freedom for
each gate being the interpulse time T . The only exception is when B = 0, where by choosing
J T = nπ/3 (n ∈ Z

+) then ||χ+(T )|| = ||χ−(T )|| = 0, with the additional advantage that
since Q+(T ) = Q−(T ), the control electron will be disentangled regardless of the initial
state. Nevertheless in practice it is desirable to have a magnetic field to create Zeeman splitting
between the degenerate energy levels. As such the problem becomes to obtain the value of T
which minimizes the Euclidean norm of the matrices χ−(T ) and χ+(T ).

In order to minimize the Euclidean norm, given by equation (6), we note that the
frequencies 2ω− and 2ω+ beat with each other, and hence we aim to isolate the beat terms,
re-writing ||χ ||2 as

||χ ||2 = 4
ω2+ + ω2−
ω2+ω2−

[1 − cos(τωs) cos(τωd)] − 4
ω2+ − ω2−
ω2+ω2−

sin(τωs) sin(τωd) (7)
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where ωs = ω+ + ω− and ωd = ω+ − ω−. To minimize ||χ || for an arbitrary value of f
we require cos(τωs) cos(τωd) = 1 and sin(τωs) sin(τωd) = 0, resulting in the conditions
τω− = Mπ and τω+ = Nπ , from which we obtain

ω−
ω+

= m

n
(8)

where m and n are integers such that M = km and N = kn and k is a positive integer. The
exact value of k will determine the functionality of the gate; however, for the sake of simplicity
we consider the first solution with k = 1, such that M and N have no common factors.

4. Obtaining the optimum interpulse time T

Using continued fractions [5] it is possible to obtain rational approximations to ω−/ω+, such
that

ω−
ω+

≈ M

N
(9)

which gives two possible values for τ , namely τ− = Mπ/ω− and τ+ = Nπ/ω+. To find the
minimum value of ||χ || we write its derivative in the form

d||χ ||2
dτ

= 8
sin(2[τ− + (τ − τ−)]ω−)

ω−
+ 8

sin(2[τ+ + (τ − τ+)]ω+)
ω+

(10)

from which, on expanding the first and second terms of the right-hand side about τ − τ− and
τ − τ+, respectively, and setting the derivative equal to zero, we deduce that the minimum of
||χ ||2 occurs at

τ = τ− + τ+
2

= π

2

(
M

ω−
+ N

ω+

)
. (11)

The final stage is to estimate the residual norm of ||χ || at the optimum time. By expanding
||χ ||2 as a series about ω− = M/N × ω+, and noting ω−/ω+ ≈ M/N , we obtain

||χ || = 2π

∣∣∣∣
M

ω−
− N

ω+

∣∣∣∣ . (12)

5. Application to a pair of gates in a homogeneous magnetic field

By way of an example let us consider a pair of gates in a homogeneous magnetic field. Let us
suppose that we have two gates, in one of which we have J1 = 1 Grad s−1 and in the second
J2 = 2 Grad s−1. We apply a homogeneous magnetic field to both gates such that f = 1 in the
first gate (and therefore f = 0.5 in the second). What values should T1 and T2 take to minimize
the entanglement of the qubits and the spin state of the control electron?

For the first gate ω+ = 2
√

3, ω− = 2
√

2, and therefore we wish to approximate
√

2/3 as
a rational number. Any real number p may be expressed as a continued fraction [5]

p = a0 + 1

a1 + 1

a2 + 1

a3 + · · ·

(13)

where the an are given by the recursive formula

an = �rn� (14)
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where �x� is the integer part of x rounded towards minus infinity and rn is given by

rn = 1

rn−1 − an−1
(15)

with the initial conditions a0 = �p� and r0 = p. By taking n terms of the continued
fraction expansion of p we can create rational approximations to p. Applying this method
to ω−/ω+ = √

2/3 gives the following continued fraction expansion:

ω−
ω+

=
√

2

3
= 1

1 + 1

4 + 1

2 + 1

4 + 1

2 + 1

4 + · · ·

(16)

which gives rational approximations to ω−/ω+ as

ω−
ω+

=
√

2

3
≈ M

N
=

(
0, 1,

4

5
,

9

11
,

40

49
,

89

109
,

396

485
, . . .

)
. (17)

As an example we pick M = 40, N = 49, which gives τ = 44.43 and therefore T1 = τ/J1 =
44.4 ns, with a residual error of ||χ || = 0.02.

Similarly, for the second gate ω+ = √
41/2, ω− = √

33/2, and therefore the continued
fraction expansion of ω−/ω+ is given by

ω−
ω+

=
√

33

41
= 1

1 + 1

8 + 1

1 + 1

2 + 1

1 + 1

1 + · · ·

(18)

giving rational approximations to ω−/ω+ as

ω−
ω+

=
√

33

41
≈ M

N
=

(
0, 1,

8

9
,

9

10
,

26

29
,

35

39
,

61

68
, . . .

)
. (19)

As an example we pick M = 61, N = 68, which gives τ = 66.72 and therefore T2 = τ/J2 =
33.4 ns, with a residual error of ||χ || = 0.01.

6. Conclusion

We have shown, in a solid state quantum gate, that it is possible to disentangle the control
electron from the information qubits to ensure that the functionality of the gate is time invariant.
By choosing an optimum interpulse time T based on the method of continued fractions we have
demonstrated that it is always possible to disentangle the control electron from the information
qubits. Since both the magnetic field and the exchange interactions are arbitrary, this will allow
multiple gates on a single substrate to be interconnected, providing the basis for a solid state
quantum computer.
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